Some remarks on factorization of entire functions
نویسندگان
چکیده
منابع مشابه
Some Remarks on Approximation of Plurisubharmonic Functions
Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...
متن کاملSome Remarks on Monge-ampère Functions
The space of Monge-Ampère functions is a rather large function space with the property that, if u is a Monge-Ampère function, then the determinant of the Hessian can be identified with a well-defined Radon measure, denoted DetDu. Moreover, the map u 7→ DetDu is continuous in a natural weak topology on the space of Monge-Ampère functions. These properties make Monge-Ampère functions potentially ...
متن کاملOn some results of entire functions of two complex variables using their relative lower order
Some basic properties relating to relative lower order of entire functions of two complex variables are discussed in this paper.
متن کاملAsymptotics of Zeros for Some Entire Functions
We study the asymptotics of zeros for entire functions of the form sin z+ ∫ 1 −1 f(t)e dt with f belonging to a space X →֒ L1(−1, 1) possessing some minimal regularity properties.
متن کاملMuckenhoupt Hamiltonians, triangular factorization, and Krein orthogonal entire functions
According to classical results by M. G. Krein and L. de Branges, for every positive measure μ on the real line R such that ∫ R dμ(t) 1+t2 <∞ there exists a Hamiltonian H such that μ is the spectral measure for the corresponding canonical Hamiltonian system JX ′ = zHX. In the case where μ is an even measure from Steklov class on R, we show that the Hamiltonian H normalized by detH = 1 belongs to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1993
ISSN: 0386-5991
DOI: 10.2996/kmj/1138039783